miércoles, 16 de junio de 2010

Soluciones amortiguadores

Para que uno se mantenga saludable, hay muchos fluidos en nuestro cuerpo que se tienen que mantener dentro de unos límites muy estrechos de pH, para que esto se realice se crea un sistema amortiguador.
Un sistema amortiguador es una solución que puede absorber grandes cantidades moderadas de ácidos y bases sin un cambio significativo de pH, es decir, una disolución que contiene unas substancias que inhiben los cambios de pH, o concentración de ión hidronio en la solución. Dichas sustancias pueden contener un ácido débil y su sal, por ejemplo:
  • ácido acético
  • acetato de sodio

o una base débil y una sal de esa base, por ejemplo:

  • hidróxido de amonio
  • cloruro de amonio

Los fluidos de los organismos vivos estan fuertemente tamponados, y el agua de mar y ciertas sustancias del suelo son otros ejemplos de disoluciones tampones existentes en la naturaleza. Las disoluciones tampones se utilizan en química y sirven como referencia en la medida del pH.

Los amortiguadores tienen máxima eficiencia para neutralizar los ácidos y las bases que se añaden, cuando las concentraciones del ácido débil (o base débil) y de la sal son iguales.

La sangre esta amortiguada, principalmente por el ión bicarbonato , pero ocurre la hiperventilación que se trata de un estado de sobrerespiración, causado por el miedo, la excitación o la ansiedad, ya que al ocurrir este proceso una persona expele más dióxido de carbono de lo necesario, alterando el equilibrio del ácido carbónico.

La solución amortiguadora entonces es una solución conformada por un ácido débil y una base débil y su sal que tiene la capacidad de resistir los cambios de pH cuando se agregan pequeñas cantidades de ácidos o de bases.

http://www.youtube.com/watch?v=basc1-5wTYo&feature=related

viernes, 28 de mayo de 2010

Cinética química

La cinética química (o cinetoquímica) es un área de la fisicoquímica que se encarga del estudio de la rapidez de reacción, cómo cambia la rapidez de reacción bajo condiciones variables y qué eventos moleculares se efectúan durante la reacción general (Difusión, ciencia de superficies, catálisis). La cinética química es un estudio puramente empírico y experimental; la química cuántica permite indagar en las mecánicas de reacción, lo que se conoce como dinámica química.
Rapidez de reacción

La Rapidez (o velocidad)de reacción está conformada por la rapidez de formación y la rapidez de descomposición. Esta rapidez no es constante y depende de varios factores, como la concentración de los reactivos, la presencia de un catalizador, la temperatura de reacción y el estado físico de los reactivos. Uno de los factores más importantes es la concentración de los reactivos. Cuanto más partículas existan en un volumen, más colisiones hay entre las partículas por unidad de tiempo. Al principio, cuando la concentración de reactivos es mayor, también es mayor la probabilidad de que se den colisiones entre las moléculas, y la rapidez es mayor. A medida que la reacción avanza, al ir disminuyendo la concentración de los reactivos, disminuye la probabilidad de colisión y con ella la rapidez de la reacción. La medida de la rapidez de reacción implica la medida de la concentración de uno de los reactivos o productos a lo largo del tiempo, esto es, para medir la rapidez de una reacción necesitamos medir, bien la cantidad de reactivo que desaparece por unidad de tiempo, o bien la cantidad de producto que aparece por unidad de tiempo. La rapidez de reacción se mide en unidades de concentración/tiempo, esto es, en (mol/l)/s es decir moles/(l·s).

La rapidez de aparición del producto es igual a la rapidez de desaparición del reactivo.

Este modelo necesita otras simplificaciones con respecto a:

  • La actividad química, es decir, la "concentración efectiva"
    La cantidad de los eductos en proporción a la cantidad de los productos y del disolvente
    La temperatura
    La energía de colisión
    Presencia de catalizadores
    La
    presión parcial de gases
Orden de reacción
Para cada reacción se puede formular una ecuación, la cual describe cuantas partículas del reactivo reaccionan entre ellas, para formar una cantidad de partículas del producto.
Sin embargo, la probabilidad de que cinco partículas colisionen al mismo tiempo y con energía suficiente, es escasa.

Más probable es que dos o tres partículas colisionen y formen un producto intermedio, este producto intermedio colisiona con las demás partículas y forma otros productos intermedios hasta formar el producto E.


La descomposición de la reacción principal en llamadas
reacciones elementales y el análisis de estas nos muestra exactamente como ocurre esta reacción.

Por medio de métodos experimentales o por premisas se puede determinar la dependencia de la rapidez de las reacciones elementales con las concentraciones de los componentes A, B, C y D.
El orden de reacción está definido como la suma de los exponentes de las concentraciones en la ley rapidez de la reacción. Este es también llamado orden total de reacción, pues el orden depende del reactivo que se analice. El orden de la reacciones se determina experimentalmente.
Para una reacción hipotética de la forma:

la rapidez de reacción se define como:

r = k[A]a[B]b

(las concentraciones de reactivos están elevados a su correspondiente coeficiente cinético sólo en el caso en el que la reacción sea elemental). Donde los corchetes denotan la concentración de cada una de las especies; "r" denota la rapidez de reacción y "k" es la constante de rapidez. La rapidez de las reacciones químicas abarca escalas de tiempo muy amplias. Por ejemplo, una explosión puede ocurrir en menos de un segundo; la cocción de un alimento puede tardar minutos u horas
Factores que afectan a la rapidez de las reacciones.
Existen varios factores que afectan la rapidez de una reacción química: la concentración de los reactivos, la temperatura, la existencia de catalizadores y la superficie de contactos tanto de los reactivos como del catalizador. Los catalizadores pueden aumentar o disminuir la velocidad de reacción.

  • Temperatura
Por norma general, la rapidez de reacción aumenta con la temperatura porque al aumentarla incrementa la energía cinética de las moléculas. Con mayor energía cinética, las moléculas se mueven más rápido y chocan con más frecuencia y con más energía. El comportamiento de la constante de rapidez o coeficiente cinético frente a la temperatura = lnA − (Ea / R)(1 / T2 − 1 / T1) esta ecuación linealizada es muy útil a puede ser descrito a través de la Ecuación de Arrhenius K = Aexp( − EA / RT) donde K es la constante de la rapidez, A es el factor de frecuencia, EA es la energía de activación necesaria y T es la temperatura, al linealizarla se tiene que el logaritmo neperiano de la constante de rapidez es inversamente proporcional a la temperatura, como sigue: ln(k1 / k2) la hora de calcular la energía de activación experimentalmente, ya que la pendiente de la recta obtenida al graficar la mencionada ley es: -EA/R, haciendo un simple despeje se obtiene fácilmente esta energía de activación, tomando en cuenta que el valor de la constante universal de los gases es 1.987cal/K mol. Para un buen número de reacciones químicas la rapidez se duplica aproximadamente cada diez grados centígrados.

  • Estado Físico de los Reactivos
Si en una reacción interactúan reactivos en distintas fases, su área de contacto es menor y su rapidez también es menor. En cambio, si el área de contacto es mayor, la rapidez es mayor.
Al encontrarse los reactivos en distintas fases aparecen nuevos factores cinéticos a analizar. La parte de la reacción química, es decir, hay que estudiar la rapidez de transporte, pues en la mayoría de los casos estas son mucho más lentas que la rapidez intrínseca de la reacción y son las etapas de transporte las que determinan la cinética del proceso.
No cabe duda de que un mayor área de contacto reduce la resistencia al transporte, pero también son muy importantes la difusividad del reactivo en el medio, y su solubilidad, dado que esta es el límite de la concentración del reactivo, y viene determinada por el equilibrio entre las fases.
Presencia de un catalizador
Los catalizadores aumentan o disminuyen la rapidez de una reacción sin transformarse. Suelen empeorar la selectividad del proceso, aumentando la obtención de productos no deseados. La forma de acción de los mismos es modificando el mecanismo de reacción, empleando pasos elementales con mayor o menor energía de activación.

Existen catalizadores homogéneos, que se encuentran en la misma fase que los reactivos (por ejemplo, el hierro III en la descomposición del peróxido de hidrógeno) y catalizadores heterogéneos, que se encuentran en distinta fase (por ejemplo la malla de platino en las reacciones de hidrogenación).
Los catalizadores también pueden retardar reacciones, no solo acelerarlas, en este caso se suelen conocer como retardantes o inhibidores, los cuales impiden la producción.
  • Concentración de los reactivos
La mayoría de las reacciones son más rápidas en presencia de un catalizador y cuanto más concentrados se encuentren los reactivos, mayor frecuencia de colisión.
La obtención de una ecuación que pueda emplearse para predecir la dependencia de la rapidez de reacción con las concentraciones de reactivos es uno de los objetivos básicos de la cinética química. Esa ecuación, que es determinada de forma empírica, recibe el nombre de ecuación de rapidez. De este modo si consideramos de nuevo la reacción hipotética la rapidez de reacción "r" puede expresarse como Los términos entre corchetes son las molaridades de los reactivos y los exponentes m y n son coeficientes que, salvo en el caso de una etapa elemental no tienen por que estar relacionados con el
coeficiente estequiométrico de cada uno de los reactivos. Los valores de estos exponentes se conocen como orden de reacción.

Hay casos en que la rapidez de reacción no es función de la concentración, en estos casos la cinética de la reacción está condicionada por otros factores del sistema como por ejemplo la radiación solar, o la superficie específica disponible en una reacción gas-sólido catalítica, donde el exceso de reactivo gas hace que siempre estén ocupados todos los centros activos del catalizador.
  • Presión
En una reacción química, si existe una mayor presión en el sistema, ésta va a variar la energía cinética de las moléculas. Entonces, si existe una mayor presión, la energía cinética de las partículas va a aumentar y la reacción se va a volver más rapida. Excepto en los gases, que al aumentar su presión aumenta también el movimiento de sus partículas y, por tanto, la rapidez de reacción.
Energía de Activación
En 1888, el químico sueco Svante Arrhenius sugirió que las moléculas deben poseer una cantidad mínima de energía para reaccionar. Esa energía proviene de la energía cinética de las moléculas que colisionan. La energía cinética sirve para originar las reacciones, pero si las moléculas se mueven muy lento, las moléculas solo rebotarán al chocar con otras moléculas y la reacción no sucede. Para que reaccionen las moléculas, éstas deben tener una energía cinética total que sea igual o mayor que cierto valor mínimo de energía llamado energía de activación (Ea). Una colisión con energía Ea o mayor, consigue que los átomos de las moléculas alcancen el estado de transición. Pero para que se lleve a cabo la reacción es necesario también que las moléculas estén orientadas correctamente. La constante de la rapidez de una reacción (k) depende también de la temperatura ya que la energía cinética depende de ella. La relación entre k y la temperatura está dada por la ecuación de Arrhenius.

martes, 11 de mayo de 2010

Termodinámica

La termodinámica (del griego θερμo-, termo, que significa "calor"[1] y δύναμις, dinámico, que significa "fuerza")[2] es una rama de la física que estudia los efectos de los cambios de magnitudes de los sistemas a un nivel macroscópico. Consituye una teoría fenomenológica — a partir de razonamientos deductivos — que estudia sistemas reales, sin modelizar y sigue un método experimental.[3] Los cambios estudiados son los de temperatura, presión y volumen, aunque también estudia cambios en otras magnitudes, tales como la imanación, el potencial químico, la fuerza electromotriz y el estudio de los medios continuos en general. También podemos decir que la termodinámica nace para explicar los procesos de intercambio de masa y energía térmica entre sistemas térmicos diferentes. Para tener un mayor manejo especificaremos que calor significa "energía en tránsito" y dinámica se refiere al "movimiento", por lo que, en esencia, la termodinámica estudia la circulación de la energía y cómo la energía infunde movimiento. Históricamente, la termodinámica se desarrolló a partir de la necesidad de aumentar la eficiencia de las primeras máquinas de vapor.
El punto de partida para la mayor parte de las consideraciones termodinámicas son las leyes de la termodinámica, que postulan que la energía puede ser intercambiada entre sistemas en forma de calor o
trabajo. También se postula la existencia de una magnitud llamada entropía, que puede ser definida para cualquier sistema. En la termodinámica se estudian y clasifican las interacciones entre diversos sistemas, lo que lleva a definir conceptos como sistema termodinámico y su contorno. Un sistema termodinámico se caracteriza por sus propiedades, relacionadas entre sí mediante las ecuaciones de estado. Éstas se pueden combinar para expresar la energía interna y los potenciales termodinámicos, útiles para determinar las condiciones de equilibrio entre sistemas y los procesos espontáneos.
Con estas herramientas, la termodinámica describe cómo los sistemas responden a los cambios en su entorno. Esto se puede aplicar a una amplia variedad de temas de
ciencia e ingeniería, tales como motores, transiciones de fase, reacciones químicas, fenómenos de transporte, e incluso agujeros negros. Los resultados de la termodinámica son esenciales para la química, la física, la ingeniería química, etc, por nombrar algunos.
Principio cero de la termodinámica
Este principio establece que existe una determinada propiedad, denominada temperatura empírica θ, que es común para a todos los estados de equilibrio termodinámico que se encuentren en equilibrio mutuo con uno dado. Tiene tremenda importancia experimental — pues permite construir instrumentos que midan la temperatura de un sistema — pero no resulta tan importante en el marco teórico de la termodinámica.
El
equilibrio termodinámico de un sistema se define como la condición del mismo en el cual las variables empíricas usadas para definir o dar a conocer un estado del sistema (presión, volumen, campo eléctrico, polarización, magnetización, tensión lineal, tensión superficial, coordenadas en el plano x , y) no son dependientes del tiempo. A dichas variables empíricas (experimentales) de un sistema se las conoce como coordenadas térmicas y dinámicas del sistema.
Este principio fundamental, aun siendo ampliamente aceptado, no fue formulado formalmente hasta después de haberse enunciado las otras tres leyes. De ahí que recibiese el nombre de principio cero.
Primera ley de la termodinámica
También conocida como principio de conservación de la energía para la termodinámica — en realidad el primer principio dice más que una ley de conservación—, establece que si se realiza trabajo sobre un sistema o bien éste intercambia calor con otro, la energía interna del sistema cambiará. Visto de otra forma, esta ley permite definir el calor como la energía necesaria que debe intercambiar el sistema para compensar las diferencias entre trabajo y energía interna. Fue propuesta por Nicolas Léonard Sadi Carnot en 1824, en su obra Reflexiones sobre la potencia motriz del fuego y sobre las máquinas adecuadas para desarrollar esta potencia, en la que expuso los dos primeros principios de la termodinámica. Esta obra fue incomprendida por los científicos de su época, y más tarde fue utilizada por Rudolf Clausius y Lord Kelvin para formular, de una manera matemática, las bases de la termodinámica.
La ecuación general de la conservación de la energía es la siguiente:
Eentra − Esale = ΔEsistema
Que aplicada a la termodinámica teniendo en cuenta el
criterio de signos termodinámico, queda de la forma:
U = Q + W
Segunda ley de la termodinámica
Esta ley arrebata la dirección en la que deben llevarse a cabo los procesos termodinámicos y, por lo tanto, la imposibilidad de que ocurran en el sentido contrario (por ejemplo, que una mancha de tinta dispersada en el agua pueda volver a concentrarse en un pequeño volumen). También establece, en algunos casos, la imposibilidad de convertir completamente toda la energía de un tipo en otro sin pérdidas. De esta forma, la segunda ley impone restricciones para las transferencias de energía que hipotéticamente pudieran llevarse a cabo teniendo en cuenta sólo el Primer Principio. Esta ley apoya todo su contenido aceptando la existencia de una magnitud física llamada entropía, de tal manera que, para un sistema aislado (que no intercambia materia ni energía con su entorno), la variación de la entropía siempre debe ser mayor que cero.
Debido a esta ley también se tiene que el flujo espontáneo de calor siempre es unidireccional, desde los cuerpos de mayor temperatura hacia los de menor temperatura, hasta lograr un equilibrio térmico.

Existen numerosos enunciados equivalentes para definir este principio, destacándose el de Clausius y el de Kelvin.
Enunciado de Clausius

Diagrama del ciclo de Carnot en función de la presión y el volumen.
En palabras de Sears es: "No es posible ningún proceso cuyo único resultado sea la extracción de calor de un recipiente a una cierta temperatura y la absorción de una cantidad igual de calor por un recipiente a temperatura más elevada".
Enunciado de Kelvin

No existe ningún dispositivo que, operando por ciclos, absorba calor de una única fuente (E.absorbida) y lo convierta íntegramente en trabajo (E.útil).
Tercera ley de la termodinámica

La Tercera de las leyes de la termodinámica, propuesta por Walther Nernst, afirma que es imposible alcanzar una temperatura igual al cero absoluto mediante un número finito de procesos físicos. Puede formularse también como que a medida que un sistema dado se aproxima al cero absoluto, su entropía tiende a un valor constante específico. La entropía de los sólidos cristalinos puros puede considerarse cero bajo temperaturas iguales al cero absoluto. No es una noción exigida por la Termodinámica clásica, así que es probablemente inapropiado tratarlo de “ley”.

Es importante recordar que los principios o leyes de la Termodinámica son sólo generalizaciones estadísticas, válidas siempre para los sistemas macroscópicos, pero inaplicables a nivel cuántico. El demonio de Maxwell ejemplifica cómo puede concebirse un sistema cuántico que rompa las leyes de la Termodinámica.

Asimismo, cabe destacar que el primer principio, el de conservación de la energía, es la más sólida y universal de las leyes de la naturaleza descubiertas hasta ahora por las ciencias.
La termometría se encarga de la medición de la temperatura de cuerpos o sistemas. Para este fin, se utiliza el termómetro, que es un instrumento que se basa en el cambio de alguna propiedad de la materia debido al efecto del calor; así se tiene el termómetro de mercurio y de alcohol, que se basan en la dilatación, los termopares que deben su funcionamiento al cambio de la conductividad eléctrica, los ópticos que detectan la variación de la intensidad del rayo emitido cuando se refleja en un cuerpo caliente.

Para poder construir el termómetro se utiliza el Principio cero de la termodinámica, que dice: "Si un sistema A que está en equilibrio térmico con un sistema B, está en equilibrio térmico también con un sistema C, entonces los tres sistemas A, B y C están en equilibrio térmico entre sí".
Una propiedad termométrica de una sustancia es aquella que varía en el mismo sentido que la temperatura, es decir, si la temperatura aumenta su valor, la propiedad también lo hará, y viceversa.

jueves, 1 de abril de 2010

Las soluciones empirícas:


Una solución empírica es una solución que puedes comprobar y que has dado con ella por medio de fuentes primarias. En este caso la información empírica es la información obtenida por medio de experimentos químicos que te llevan a decir cuáles son las propiedades de este experimento con certeza.
En química una solución es una mezcla homogénea, la cual a nivel molecular o iónico de dos o más especies químicas que no reaccionan entre sí; cuyos componentes se encuentran en proporción que varía entre ciertos límites.
Toda disolución esta formada por un soluto y un medio dispersante llamado solvente. También se define disolvente como la sustancia que existe en mayor cantidad que el soluto en la disolución y en la cual se disuelve el soluto.
Si ambos solvente y soluto existe en la misma cantidad (50% y 50%) la sustancia que es mas frecuente utilizada como disolvente es la que se designa como tal mayormente es agua debido a que es el disolvente por excelencia. Una disolución puede estar formada por uno o más solutos y uno o más disolventes. Una disolución será una mezcla en igual proporción en cualquier cantidad que tomemos y no se podrán separar ni por filtración o por centrifugación.
Dentro de estas podremos mencionar a:
Soluciones diluidas: Es aquella en la que la cantidad de soluto que interviene esta en mínima proporción en un volumen determinado.
Solución concentrada: Tiene una cantidad considerable de soluto en un volumen determinado.
Solución insaturada: No tiene la cantidad máxima posible de soluto para una temperatura y presión dados.
Solución saturada: Tiene la mayor cantidad posible de soluto para una presión y temperatura dadas, en ellas existe un equilibrio entre soluto y solvente.
Solución sobresaturada: Es la solución en la cuál no es posible disolver más soluto.
Si se calienta una solución saturada se le puede agregar más soluto, esta solución es enfriada lentamente y no se le perturba, ósea puede retener un exceso de soluto pasando a ser una solución sobresaturada. Sin embargo, son sistemas inestables, con cualquier perturbación, este soluto en exceso se precipitará y la solución quedara saturada.
http://www.youtube.com/watch?v=MzNO2AffaOQ
Hola
Espero y este sea una nueva forma de empezar a aprender acerca del mundo de la química, este espacio esta hecho para que tú empieces a dar tú opinión con respecto a temas que se encuentran relacionados con las cosas cotidianas aunque tratadas desde un punto de vista técnico.
Aventuremonos en este espacio.
Bienvenido